Find the equation of the perpendicular bisector $\overline{P Q}$ for the given endpoints.

1. $P(5,2), Q(7,4)$

SOLUTION:

Use the Midpoint Formula to find the coordinates of the midpoint of $\overline{P Q}$.

$$
\begin{aligned}
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =M\left(\frac{5+7}{2}, \frac{2+4}{2}\right) \\
& =M(6,3)
\end{aligned}
$$

A perpendicular bisector is perpendicular to the segment through the midpoint. In order to find the slope of the bisector, first find the slope of $\overline{P Q}$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4-2}{7-5} \\
& =\frac{2}{2} \\
& =1
\end{aligned}
$$

So, the slope of the line perpendicular to $\overline{P Q}$ is -1 .
Now use the point-slope form to write the equation of the line.
Here, $m=-1$ and $\left(x_{1}, y_{1}\right)=(6,3)$.
$y-3=-1(x-6)$.
$y=-x+9$
The equation of the perpendicular bisector of $\overline{P Q}$ is $y=-x+9$.
2. $P(-3,9), Q(-1,5)$

SOLUTION:

Use the Midpoint Formula to find the coordinates of the midpoint of $\overline{P Q}$.

$$
\begin{aligned}
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =M\left(\frac{-3+(-1)}{2}, \frac{9+5}{2}\right) \\
& =M(-2,7)
\end{aligned}
$$

A perpendicular bisector is perpendicular to the segment through the midpoint. In order to find the slope of the bisector, first find the slope of $\overline{P Q}$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{5-9}{-1-(-3)} \\
& =\frac{-4}{2} \\
& =-2
\end{aligned}
$$

So, the slope of the line perpendicular to $\overline{P Q}$ is $\frac{1}{2}$.
Now use the point-slope form to write the equation of the line.
Here, $m=\frac{1}{2}$ and $\left(x_{1}, y_{1}\right)=(-2,7)$.
$y-7=\frac{1}{2}(x-(-2))$.
$y=\frac{1}{2} x+8$
The equation of the perpendicular bisector of $\overline{P Q}$ is $y=\frac{1}{2} x+8$.
3. $P(-6,-1), Q(8,7)$

SOLUTION:

Use the Midpoint Formula to find the coordinates of the midpoint of $\overline{P Q}$.

$$
\begin{aligned}
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =M\left(\frac{-6+8}{2}, \frac{-1+7}{2}\right) \\
& =M(1,3)
\end{aligned}
$$

A perpendicular bisector is perpendicular to the segment through the midpoint. In order to find the slope of the bisector, first find the slope of $\overline{P Q}$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{7-(-1)}{8-(-6)} \\
& =\frac{8}{14} \\
& =\frac{4}{7}
\end{aligned}
$$

So, the slope of the line perpendicular to $\overline{P Q}$ is $-\frac{7}{4}$.
Now use the point-slope form to write the equation of the line.
Here, $m=-\frac{7}{4}$ and $\left(x_{1}, y_{1}\right)=(1,3)$.
$y-3=-\frac{7}{4}(x-1)$.
$y-3=-\frac{7}{4} x+\frac{7}{4}$
$y=-\frac{7}{4} x+\frac{19}{4}$
The equation of the perpendicular bisector of $\overline{P Q}$ is $y=-\frac{7}{4} x+\frac{19}{4}$.
4. $P(-2,1), Q(0,-3)$

SOLUTION:

Use the Midpoint Formula to find the coordinates of the midpoint of $\overline{P Q}$.

$$
\begin{aligned}
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =M\left(\frac{-2+0}{2}, \frac{1+(-3)}{2}\right) \\
& =M(-1,-1)
\end{aligned}
$$

A perpendicular bisector is perpendicular to the segment through the midpoint. In order to find the slope of the bisector, first find the slope of $\overline{P Q}$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-3-1}{0-(-2)} \\
& =\frac{-4}{2} \\
& =-2
\end{aligned}
$$

So, the slope of the line perpendicular to $\overline{P Q}$ is $\frac{1}{2}$.
Now use the point-slope form to write the equation of the line.
Here, $m=\frac{1}{2}$ and $\left(x_{1}, y_{1}\right)=(-1,-1)$.
$y-(-1)=\frac{1}{2}(x-(-1))$.
$y+1=\frac{1}{2} x+\frac{1}{2}$
$y=\frac{1}{2} x-\frac{1}{2}$
The equation of the perpendicular bisector of $\overline{P Q}$ is $y=\frac{1}{2} x-\frac{1}{2}$.
5. $P(0,1.6), Q(0.5,2.1)$

SOLUTION:

Use the Midpoint Formula to find the coordinates of the midpoint of $\overline{P Q}$.

$$
\begin{aligned}
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =M\left(\frac{0+0.5}{2}, \frac{1.6+2.1}{2}\right) \\
& =M(0.25,1.85)
\end{aligned}
$$

A perpendicular bisector is perpendicular to the segment through the midpoint. In order to find the slope of the bisector, first find the slope of $\overline{P Q}$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2.1-1.6}{0.5-0} \\
& =\frac{0.5}{0.5} \\
& =1
\end{aligned}
$$

So, the slope of the line perpendicular to $\overline{P Q}$ is -1 .
Now use the point-slope form to write the equation of the line.
Here, $m=-1$ and $\left(x_{1}, y_{1}\right)=(0.25,1.85)$.
$y-1.85=-1(x-0.25)$.
$y-1.85=-x+0.25$
$y=-x+2.1$
6. $P(-7,3), Q(5,3)$

SOLUTION:

Use the Midpoint Formula to find the coordinates of the midpoint of $\overline{P Q}$.

$$
\begin{aligned}
M\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) & =M\left(\frac{-7+5}{2}, \frac{3+3}{2}\right) \\
& =M(-1,3)
\end{aligned}
$$

A perpendicular bisector is perpendicular to the segment through the midpoint. In order to find the slope of the bisector, first find the slope of $\overline{P Q}$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{3-3}{5-(-7)} \\
& =\frac{0}{12} \\
& =0
\end{aligned}
$$

So, the slope of the line perpendicular to $\overline{P Q}$ is undefined and hence it is a vertical line.
The x-coordinate of the midpoint is -1 . So, equation of a vertical line through the point $(-1,3)$ is $x=-1$.
7. CHALLENGE Find the equations of the lines that contain the sides of $\triangle X Y Z$ with vertices $X(-2,0), Y(1$, $3)$, and $Z(3,-1)$.

SOLUTION:

Find the slopes of the sides $\overline{X Y}, \overline{Y Z}$, and $\overline{X Z}$.

$$
\begin{aligned}
m_{x y} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{3-0}{1-(-2)} \\
& =\frac{3}{3} \\
& =1 \\
m_{y z} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-1-3}{3-1} \\
& =\frac{-4}{2} \\
& =-2
\end{aligned}
$$

$$
\begin{aligned}
m_{x c} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-1-0}{3-(-2)} \\
& =\frac{-1}{5} \\
& =-\frac{1}{5}
\end{aligned}
$$

$m_{x y}=1$ and $\left(x_{1}, y_{1}\right)=(-2,0)$
So, the equation of the side $\overline{X Y}$ is:
$y-0=1(x-(-2))$.
$y=x+2$

$$
m_{y z}=-2 \text { and }\left(x_{1}, y_{1}\right)=(1,3) .
$$

So, the equation of the side $\overline{Y Z}$ is:
$y-3=-2(x-1)$.

$$
\begin{gathered}
y=-2 x+5 \\
m_{x z}=-\frac{1}{5} \text { and }\left(x_{1}, y_{1}\right)=(-2,0)
\end{gathered}
$$

So, the equation of the side $\overline{X Z}$ is:

$$
\begin{aligned}
y-0 & =-\frac{1}{5}(x-(-2)) \\
y & =-\frac{1}{5} x-\frac{2}{5}
\end{aligned}
$$

