Mixed Review on Formulas $\&$ Theorems on Geometry of circles

Circle Formulas and Theorems :http://www.mathwarehouse.com/geometry/circle/

> © $\frac{\text { www.mathwarehouse.com }}{4 \text { and } 5 \text { which were taken from jmap.org) }}$ (except questions All Rights Reserved Commercial Use Prohibited

TEACHERS: Feel free to make copies of this worksheet for the sole purpose of use in your own classroom. ENJOY!!! Redistribution in any other form is prohibited.

More Math worksheets and activities available at www.mathwarehouse.com/classroom/worksheets-and-activities.php

Play Math Games at TheMathGames.com

$$
\text { Warm } \mathrm{U}_{\mathrm{p}}: \widehat{G F}: \widehat{F D}: \widehat{D C}=4: 1: 1 \text {, What is } \mathrm{m} \angle G C D \text { ? }
$$

1) $\overline{A B}$ is a tangent. $\overparen{G F}: \overparen{F D}: \overparen{D C}=4: 1: 1, \angle H F B=25^{\circ}, \overparen{B C}=30^{\circ}$

Find $\mathrm{m} \overparen{G F}, \mathrm{~m} \angle A, m \angle B E C, m \angle G C D$

2) $\overrightarrow{A B}$ is a tangent. $\angle \mathrm{ABC}=60^{\circ}, \overparen{C D}=50^{\circ}, \overparen{D E}: \overparen{E B}=9: 10$ Find $\mathrm{m} \angle \mathrm{DCE}, \mathrm{m} \angle \mathrm{CDB}, \mathrm{m} \angle \mathrm{CEB}, \mathrm{m} \angle \mathrm{CFD}$.

3) $\overrightarrow{A H}$ is a tangent, $\overline{\mathrm{BOF}}$ is a diameter $B F \| C E, \mathrm{~m} \angle F A H=70^{\circ}, \widehat{C D E}=100^{\circ}$ Find the measure of $\overparen{F A}, \overparen{B A}, \overparen{B C}, \overparen{E F}, \mathrm{~m} \angle \mathrm{CDF}, \mathrm{m} \angle \mathrm{AFD}$

4) Given circle O with diameter $\overline{G O A L}$; secants $\overline{H U G}$ and $\overline{H T A M}$ intersect at point H. $m \overline{G M}: m \overline{M L}: m \overline{L T}=7: 3: 2$; and chord $\overline{G U} \cong$ chord $\overline{U T}$. Find the ratio of $m \angle U G L$ to $m \angle H$.

5) In the accompanying diagram, circle O has radius $\overline{O D}$, diameter $\overline{B O H F}$, secant $\overline{C B A}$, and chords $\overline{D H G}$ and $\overline{B D} ; \overline{C E}$ is tangent to circle O at $D ; \overrightarrow{m F}=80$; and $\overrightarrow{m A A}: \overrightarrow{m G}: \overrightarrow{m F}=3: 2: 1$.
Find $m \widehat{G F}, m \angle B H D, m \angle B D G, m \angle G D E, m \angle C$, and $m \angle B O D$.

6) UR and TQ are chords. M UT $=52^{\circ}$

What is the measure of $\mathrm{QR}, \mathrm{UV}, \mathrm{TS}, \angle \mathrm{TQS}, \mathrm{m} \angle \mathrm{URV}$?

7) $\mathrm{M} \mathrm{QR}=80^{\circ}$

What is the measure of $\angle \mathrm{UAT}, \angle \mathrm{QBR}, \mathrm{UT}$?

$$
\text { 8) } \angle 1 \cong \angle 2 \text { and } \mathrm{QR}=70^{\circ}
$$

What is the measure of $\angle 1, \angle 2, \angle Q O R$

Is VS \| QR? Explain your answer?

Question 4 and 5 were taken from jmap.org. Included below are the worked out answers provided from that excellent website.
4
Given circle O with diameter $\overline{G O A L}$;
secants $\overline{H U G}$ and $\overline{H T A M}$ intersect at
point $H ; m G M: m M L: m L T=7: 3: 2 ;$
and chord $\overline{G U} \cong$ chord $\overline{U T}$. Find the
ratio of $m \angle U G L$ to $m \angle H$.
$G M$ and $M L$ form a semi-circle and measure $126^{\circ} \quad\left(\frac{7}{10} \times 180\right)$ and 54° $\left(\frac{3}{10} \times 180\right)$, respectively. $L T$ measures 36°. GM and $M L$ form a semi-circle and measure 126°. GUT measures 144° (180-36). Equal chords intercept equal arcs. Because chord $\overline{G U} \cong$ chord $\overline{U T}$, $G U$ and $U T$ each measures $72^{\circ}\left(\frac{144}{2}\right)$. $m U T L=108(72+36) . \quad$ The measure of an inscribed angle is half that of its intercepted arc. So $m \angle U G L=54$.

The angle formed by a tangent and a secant is equal to half the difference between the intercepted arcs:

$$
\frac{126-72}{2}=27
$$

The ratio of $m \angle U G L$ to $m \angle H$ is 54:27, or 2:1.

In the accompanying diagram, circle O has radius $\overline{O D}$, diameter $\overline{B O H F}$, secant $\overline{C B A}$, and chords $\overline{D H G}$ and $\overline{B D} ; \overline{C E}$ is tangent to circle O at $D ; m D F=80$; and $m B A: m A G: m G F=3: 2: 1$. Find $m G F, \quad m \angle B H D, \quad m \angle B D G$, $m \angle G D E, m \angle C$, and $m \angle B O D$.	$B A, A G$ and $G F$ form a semi-circle and measure $90^{\circ} \quad\left(\frac{3}{6} \times 180\right), 60^{\circ} \quad\left(\frac{2}{6} \times 180\right)$ and $30^{\circ} \quad\left(\frac{1}{6} \times 180\right)$, respectively. The measure of an inscribed angle is half that of its intercepted arc. So $m \angle B D G=75$ $\left(\frac{90+60}{2}\right) \text { and } m \angle H B D=40 \quad\left(\frac{80}{2}\right) .$ Therefore $m \angle B H D=65$ (180-(75+40)). The angle formed by a tangent and a chord is half the intercepted arc. Since the intercepted arc is $110^{\circ}(80+30), m \angle G D E=55$. Given diameter $\overline{B O H F}$ and $m D F=80$, $m B D=100$. The angle formed by a tangent and a secant is equal to half the difference between the intercepted arcs, so $m \angle C$: $\frac{(60+30+80)-100}{2}=35$ The measure of a central angle is equal to the measure of the arc it intercepts, so $m \angle B O D=100$.

Mixed Review on Formulas $\&$ Theorems on Geometry of circles

Circle Formulas and Theorems :http://www.mathwarehouse.com/geometry/circle/

> © $\frac{\text { www.mathwarehouse.com }}{4 \text { and } 5 \text { which were taken from jmap.org) }}$ (except questions All Rights Reserved Commercial Use Prohibited

TEACHERS: Feel free to make copies of this worksheet for the sole purpose of use in your own classroom. ENJOY!!! Redistribution in any other form is prohibited.

More worksheets and activities available at
www.mathwarehouse.com/classroom/worksheets-and-activities.php

Play Math Games at TheMathGames.com

