D. Even and Odd Functions

Functions that are even have the characteristic that for all $a, f(-a)=f(a)$. What this says is that plugging in a positive number a into the function or a negative number $-a$ into the function makes no difference \ldots you will get the same result. Even functions are symmetric to the y-axis.

Functions that are odd have the characteristic that for all $a, f(-a)=-f(a)$. What this says is that plugging in a negative number $-a$ into the function will give you the same result as plugging in the positive number and taking the negative of that. So, odd functions are symmetric to the origin. If a graph is symmetric to the x-axis, it is not a function because it fails the vertical-line test.

1. Of the common functions in section 3 , which are even, which are odd, and which are neither?

$$
\begin{aligned}
& \text { Even: } y=a, y=x^{2}, y=|x|, y=\cos x \quad \text { Odd: } y=x, y=x^{3}, y=\frac{1}{x}, y=\sin x \\
& \text { Neither: } y=\sqrt{x}, y=\ln x, y=e^{x}, y=e^{-x}
\end{aligned}
$$

2. Show that the following functions are even:
a) $f(x)=x^{4}-x^{2}+1$
b) $f(x)=\left|\frac{1}{x}\right|$
c) $f(x)=x^{2 / 3}$
$f(-x)=(-x)^{4}-(-x)^{2}+1$
$=x^{4}-x^{2}+1=f(x)$

$$
f(-x)=\left|\frac{1}{-x}\right|=\left|\frac{1}{x}\right|=f(x)
$$

$$
\begin{aligned}
& f(-x)=(-x)^{2 / 3}=(\sqrt[3]{-x})^{2} \\
& =(\sqrt[3]{x})^{2}=f(x)
\end{aligned}
$$

3. Show that the following functions are odd:
a) $f(x)=x^{3}-x$
b) $f(x)=\sqrt[3]{x}$
c) $f(x)=e^{x}-e^{-x}$
$f(-x)=(-x)^{3}+x$
$=x-x^{3}=-f(x)$

$$
f(-x)=\sqrt[3]{-x}=-\sqrt[3]{x}=-f(x) \quad f(-x)=e^{-x}-e^{x}=-\left(e^{x}-e^{-x}\right)=-f(x)
$$

4. Determine if $f(x)=x^{3}-x^{2}+x-1$ is even, odd, or neither. Justify your answer.
$f(-x)=-x^{3}-x^{2}-x-1 \neq f(x)$ so f is not even. $\quad-f(x)=-x^{3}+x^{2}-x-1 \neq f(-x)$ so f is not odd.
Graphs may not be functions and yet have x-axis or y-axis or both. Equations for these graphs are usually expressed in "implicit form" where it is not expressed as " $y=$ " or " $f(x)=$ ". If the equation does not change after making the following replacements, the graph has these symmetries:

$$
x \text {-axis: } y \text { with }-y \quad y \text {-axis: } x \text { with }-x \quad \text { origin: both } x \text { with }-x \text { and } y \text { with }-y
$$

5. Determine the symmetry for $x^{2}+x y+y^{2}=0$.

$$
\begin{aligned}
& x \text { - axis: } x^{2}+x(-y)+(-y)^{2}=0 \Rightarrow x^{2}-x y+y^{2}=0 \text { so not symmetric to } x \text {-axis } \\
& y \text {-axis: }(-x)^{2}+(-x)(y)+y^{2}=0 \Rightarrow x^{2}-x y+y^{2}=0 \text { so not symmetric to } y \text {-axis } \\
& \text { origin: }(-x)^{2}+(-x)(-y)+y^{2}=0 \Rightarrow x^{2}+x y+y^{2}=0 \text { so symmetric to origin }
\end{aligned}
$$

D. Even and odd functions - Assignment

- Show work to determine if the following functions are even, odd, or neither.

1. $f(x)=7$
2. $f(x)=2 x^{2}-4 x$
3. $f(x)=-3 x^{3}-2 x$
4. $f(x)=\sqrt{x+1}$
5. $f(x)=\sqrt{x^{2}+1}$
6. $f(x)=8 x$
7. $f(x)=8 x-\frac{1}{8 x}$
8. $f(x)=|8 x|$
9. $f(x)=|8 x|-8 x$

Show work to determine if the graphs of these equations are symmetric to the x-axis, y-axis or the origin.
10. $4 x=1$
11. $y^{2}=2 x^{4}+6$
12. $3 x^{2}=4 y^{3}$
13. $x=|y|$
14. $|x|=|y|$
15. $|x|=y^{2}+2 y+1$

E. Transformation of Graphs

A curve in the form $y=f(x)$, which is one of the basic common functions from section C can be transformed in a variety of ways. The shape of the resulting curve stays the same but zeros and y-intercepts might change and the graph could be reversed. The table below describes transformations to a general function $y=f(x)$ with the parabolic function $f(x)=x^{2}$ as an example.

E. Transformation of Graphs Assignment

- Sketch the following equations:

1. $y=-x^{2}$

2. $y=2 x^{2}$

3. $y=\sqrt{x+1}+1$

4. $y=-2|x-1|+4$

5. $y=-2^{x+2}$

6. $y=\frac{-2}{x+1}$

7. $y=(x-2)^{2}$

8. $y=\sqrt{4 x}$

9. $y=-\left|\frac{x}{2}\right|-1$

10. $y=2^{-2 x}$

11. $y=\frac{1}{(x+2)^{2}}-3$

F. Special Factorization

While factoring skills were more important in the days when A topics were specifically tested, students still must know how to factor. The special forms that occur most regularly are:

Common factor: $x^{3}+x^{2}+x=x\left(x^{2}+x+1\right)$
Difference of squares: $x^{2}-y^{2}=(x+y)(x-y)$ or $x^{2 n}-y^{2 n}=\left(x^{n}+y^{n}\right)\left(x^{n}-y^{n}\right)$
Perfect squares: $x^{2}+2 x y+y^{2}=(x+y)^{2}$
Perfect squares: $x^{2}-2 x y+y^{2}=(x-y)^{2}$
Sum of cubes: $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$ - Trinomial unfactorable
Difference of cubes: $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$ - Trinomial unfactorable
Grouping: $x y+x b+a y+a b=x(y+b)+a(y+b)=(x+a)(y+b)$
The term "factoring" usually means that coefficients are rational numbers. For instance, $x^{2}-2$ could technically be factored as $(x+\sqrt{2})(x-\sqrt{2})$ but since $\sqrt{2}$ is not rational, we say that $x^{2}-2$ is not factorable. It is important to know that $x^{2}+y^{2}$ is unfactorable.

- Completely factor the following expressions.

1. $4 a^{2}+2 a$
$2 a(a+2)$
2. $x^{2}+16 x+64$
$(x+8)^{2}$
3. $4 x^{2}-64$
$4(x+4)(x-4)$
4. $5 x^{4}-5 y^{4}$
$5\left(x^{2}+1\right)(x+1)(x-1)$
5. $16 x^{2}-8 x+1$
$(4 x-1)^{2}$
6. $9 a^{4}-a^{2} b^{2}$
$a^{2}(3 a+b)(3 a-b)$
7. $2 x^{2}-40 x+200$
$2(x-10)^{2}$
8. $x^{3}-8$
$(x-2)\left(x^{2}+2 x+4\right)$
9. $8 x^{3}+27 y^{3}$
$(2 x+3 y)\left(4 x^{2}-6 x y+9 y^{2}\right)$
10. $x^{4}+11 x^{2}-80$
$(x+4)(x-4)\left(x^{2}+5\right)$
11. $x^{4}-10 x^{2}+9$
$(x+1)(x-1)(x+3)(x-3)$
12. $36 x^{2}-64$
$4(3 x+4)(3 x-4)$
13. $x^{3}-x^{2}+3 x-3$

$x^{2}(x-1)+3(x-1)$
$(x-1)\left(x^{2}+3\right)$

14. $x^{3}+5 x^{2}-4 x-20$

$$
\begin{aligned}
& x^{2}(x+5)-4(x+5) \\
& (x+5)(x-2)(x+2)
\end{aligned}
$$

$$
\begin{aligned}
& 15.9-\left(x^{2}+2 x y+y^{2}\right) \\
& \begin{array}{l}
9-(x+y)^{2} \\
(3+x+y)(3-x-y)
\end{array}
\end{aligned}
$$

F. Special Factorization - Assignment

- Completely factor the following expressions

1. $x^{3}-25 x$
2. $30 x-9 x^{2}-25$
3. $3 x^{3}-5 x^{2}+2 x$
4. $3 x^{8}-3$
5. $16 x^{4}-24 x^{2} y+9 y^{2}$
6. $9 a^{4}-a^{2} b^{2}$
7. $4 x^{4}+7 x^{2}-36$
8. $250 x^{3}-128$
9. $\frac{8 x^{3}}{125}+\frac{64}{y^{3}}$
10. $x^{5}+17 x^{3}+16 x$
11. $144+32 x^{2}-x^{4}$
12. $16 x^{4 a}-y^{8 a}$
13. $x^{3}-x y^{2}+x^{2} y-y^{3}$
14. $x^{6}-9 x^{4}-81 x^{2}+729$
15. $x^{2}-8 x y+16 y^{2}-25$
16. $x^{5}+x^{3}+x^{2}+1$
17. $x^{6}-1$
18. $x^{6}+1$
