D. Even and Odd Functions

Functions that are even have the characteristic that for all a, f(-a) = f(a). What this says is that plugging in a positive number a into the function or a negative number -a into the function makes no difference ... you will get the same result. Even functions are symmetric to the *y*-axis.

Functions that are odd have the characteristic that for all a, f(-a) = -f(a). What this says is that plugging in a negative number -a into the function will give you the same result as plugging in the positive number and taking the negative of that. So, odd functions are symmetric to the origin. If a graph is symmetric to the *x*-axis, it is not a function because it fails the vertical-line test.

1. Of the common functions in section 3, which are even, which are odd, and which are neither?

Even: y = a, $y = x^2$, y = |x|, $y = \cos x$ Odd: y = x, $y = x^3$, $y = \frac{1}{x}$, $y = \sin x$ Neither: $y = \sqrt{x}$, $y = \ln x$, $y = e^x$, $y = e^{-x}$

2. Show that the following functions are even:

a)
$$f(x) = x^4 - x^2 + 1$$

b) $f(x) = \left|\frac{1}{x}\right|$
c) $f(x) = x^{2/3}$
 $f(-x) = (-x)^4 - (-x)^2 + 1$
 $= x^4 - x^2 + 1 = f(x)$
 $f(-x) = \left|\frac{1}{-x}\right| = \left|\frac{1}{x}\right| = f(x)$
 $f(-x) = (-x)^{2/3} = \left(\sqrt[3]{-x}\right)^2$
 $= \left(\sqrt[3]{x}\right)^2 = f(x)$

3. Show that the following functions are odd:

a)
$$f(x) = x^3 - x$$

 $f(-x) = (-x)^3 + x$
 $= x - x^3 = -f(x)$
b) $f(x) = \sqrt[3]{x}$
 $f(-x) = \sqrt[3]{-x} = -\sqrt[3]{x} = -f(x)$
 $f(-x) = e^{-x} - e^x = -(e^x - e^{-x}) = -f(x)$

4. Determine if $f(x) = x^3 - x^2 + x - 1$ is even, odd, or neither. Justify your answer.

$$f(-x) = -x^3 - x^2 - x - 1 \neq f(x) \text{ so } f \text{ is not even.} \qquad -f(x) = -x^3 + x^2 - x - 1 \neq f(-x) \text{ so } f \text{ is not odd.}$$

Graphs may not be functions and yet have x-axis or y-axis or both. Equations for these graphs are usually expressed in "implicit form" where it is not expressed as "y =" or "f(x) =". If the equation does not change after making the following replacements, the graph has these symmetries:

x-axis: y with -y y-axis: x with -x origin: both x with -x and y with -y

5. Determine the symmetry for $x^2 + xy + y^2 = 0$.

 $x - axis: x^{2} + x(-y) + (-y)^{2} = 0 \Rightarrow x^{2} - xy + y^{2} = 0 \text{ so not symmetric to } x - axis$ $y - axis: (-x)^{2} + (-x)(y) + y^{2} = 0 \Rightarrow x^{2} - xy + y^{2} = 0 \text{ so not symmetric to } y - axis$ $\text{origin: } (-x)^{2} + (-x)(-y) + y^{2} = 0 \Rightarrow x^{2} + xy + y^{2} = 0 \text{ so symmetric to origin}$

www.mastermathmentor.com

D. Even and odd functions - Assignment

• Show work to determine if the following functions are even, odd, or neither.

1.
$$f(x) = 7$$

2. $f(x) = 2x^2 - 4x$
3. $f(x) = -3x^3 - 2x$

4.
$$f(x) = \sqrt{x+1}$$
 5. $f(x) = \sqrt{x^2+1}$ 6. $f(x) = 8x$

7.
$$f(x) = 8x - \frac{1}{8x}$$

8. $f(x) = |8x|$
9. $f(x) = |8x| - 8x$

Show work to determine if the graphs of these equations are symmetric to the *x*-axis, *y*-axis or the origin.

10.
$$4x = 1$$

11. $y^2 = 2x^4 + 6$
12. $3x^2 = 4y^3$

13.
$$x = |y|$$
 14. $|x| = |y|$ 15. $|x| = y^2 + 2y + 1$

E. Transformation of Graphs

A curve in the form y = f(x), which is one of the basic common functions from section C can be transformed in a variety of ways. The shape of the resulting curve stays the same but zeros and *y*-intercepts might change and the graph could be reversed. The table below describes transformations to a general function y = f(x) with the parabolic function $f(x) = x^2$ as an example.

Notation	How $f(x)$ changes	Example with $f(x) = x^2$
f(x)+a	Moves graph up <i>a</i> units	
f(x)-a	Moves graph down <i>a</i> units	
f(x+a)	Moves graph <i>a</i> units left	
f(x-a)	Moves graph <i>a</i> units right	
$a \cdot f(x)$	a > 1: Vertical Stretch	
$a \cdot f(x)$	0 < a < 1: Vertical shrink	
f(ax)	<i>a</i> >1: Horizontal compress (same effect as vertical stretch)	
f(ax)	0 < a < 1: Horizontal elongated (same effect as vertical shrink)	
-f(x)	Reflection across <i>x</i> -axis	
$\overline{f(-x)}$	Reflection across y-axis	

E. Transformation of Graphs Assignment

• Sketch the following equations:

1. $y = -x$	c^2
	fs ^y
	-4
	-2
	-1
-4 -3 -2 -1	
	-2
	-3
	-4
	-5

7. y = |x+1| - 3

	↑ 5 <i>У</i>
	-4
	-3
	2
	-1
-4 -3 -2 -1	0 1 2 3 4
	-1
	-3
	-5

	↑ 5 <i>У</i>
	4
	-3
·····	2
	1
-4 -3 -2 -1	0 1 2 3 4
	-1
	-2
2	+-3
	-3

$$y = \frac{1}{x+1}$$

F. Special Factorization

While factoring skills were more important in the days when A topics were specifically tested, students still must know how to factor. The special forms that occur most regularly are:

Common factor:
$$x^{3} + x^{2} + x = x(x^{2} + x + 1)$$

Difference of squares: $x^{2} - y^{2} = (x + y)(x - y)$ or $x^{2n} - y^{2n} = (x^{n} + y^{n})(x^{n} - y^{n})$
Perfect squares: $x^{2} + 2xy + y^{2} = (x + y)^{2}$
Perfect squares: $x^{2} - 2xy + y^{2} = (x - y)^{2}$
Sum of cubes: $x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$ - Trinomial unfactorable
Difference of cubes: $x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2})$ - Trinomial unfactorable
Grouping: $xy + xb + ay + ab = x(y + b) + a(y + b) = (x + a)(y + b)$

The term "factoring" usually means that coefficients are rational numbers. For instance, $x^2 - 2$ could technically be factored as $(x + \sqrt{2})(x - \sqrt{2})$ but since $\sqrt{2}$ is not rational, we say that $x^2 - 2$ is not factorable. It is important to know that $x^2 + y^2$ is unfactorable.

• Completely factor the following expressions.

1.
$$4a^{2} + 2a$$

 $2. x^{2} + 16x + 64$
 $3. 4x^{2} - 64$
 $4(x+4)(x-4)$
3. $4x^{2} - 64$
 $4(x+4)(x-4)$
4. $5x^{4} - 5y^{4}$
 $5. 16x^{2} - 8x + 1$
 $(4x-1)^{2}$
5. $16x^{2} - 8x + 1$
 $(4x-1)^{2}$
6. $9a^{4} - a^{2}b^{2}$
 $a^{2}(3a+b)(3a-b)$
7. $2x^{2} - 40x + 200$
 $2(x-10)^{2}$
8. $x^{3} - 8$
 $(x-2)(x^{2} + 2x + 4)$
9. $8x^{3} + 27y^{3}$
 $(2x+3y)(4x^{2} - 6xy + 9y^{2})$
10. $\frac{x^{4} + 11x^{2} - 80}{(x+4)(x-4)(x^{2} + 5)}$
11. $x^{4} - 10x^{2} + 9$
 $(x+1)(x-1)(x+3)(x-3)$
12. $36x^{2} - 64$
 $4(3x+4)(3x-4)$
13. $x^{3} - x^{2} + 3x - 3$
 $x^{2}(x-1) + 3(x-1)$
 $(x^{2}(x+5) - 4(x+5))$
 $(x+5)(x-2)(x+2)$
15. $9 - (x^{2} + 2xy + y^{2})$
 $9 - (x+y)^{2}$
 $(3+x+y)(3-x-y)$

F. Special Factorization - Assignment

• Completely factor the following expressions

1.
$$x^3 - 25x$$
2. $30x - 9x^2 - 25$ 3. $3x^3 - 5x^2 + 2x$ 4. $3x^8 - 3$ 5. $16x^4 - 24x^2y + 9y^2$ 6. $9a^4 - a^2b^2$ 7. $4x^4 + 7x^2 - 36$ 8. $250x^3 - 128$ 9. $\frac{8x^3}{125} + \frac{64}{y^3}$ 10. $x^5 + 17x^3 + 16x$ 11. $144 + 32x^2 - x^4$ 12. $16x^{4a} - y^{8a}$ 13. $x^3 - xy^2 + x^2y - y^3$ 14. $x^6 - 9x^4 - 81x^2 + 729$ 15. $x^2 - 8xy + 16y^2 - 25$

16. $x^5 + x^3 + x^2 + 1$ 17. $x^6 - 1$ 18. $x^6 + 1$

www.mastermathmentor.com

RU Ready?