\qquad

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	$\frac{3 \pi}{4}$	$\sqrt{2}$	0	$\frac{1}{a}$
2	8	-6	3	-4
3	1	5	4	$\frac{1}{2}$
4	5	$2 a^{2}$	9	3

The functions f and g are differentiable for all real numbers x. The table above gives values of the function and their first derivatives at selected values of x with a being a constant.
a. If $h(x)=\sin (f(x))$, write an equation of the line tangent to h at the point where $x=1$.
b. If $r(x)=\frac{1}{\sqrt{g(2 x)}}$, find $r^{\prime}(x)$ at $x=2$.
c. Find the value(s) of a if the tangent lines to $f(g(x))$ and $g(f(x))$ are perpendicular at $x=3$.
\qquad

Parts a, b, and c all refer to $f(x)$, given by $f(x)=x^{2}-x-6$ which is defined on $[0,6]$.
a. Write an equation of the line tangent to f at the point where $x=4$.
b. If $g(x)=[f(x)]^{2}$, write an equation of any horizontal tangent lines to g. Show how you arrive at your answer.
c. If $h(x)=\frac{1}{f(2 x)}$, find all values of x where the tangent lines to h are either horizontal or do not exist on the interval $[0,6]$. Show how you arrive at your answer.
\qquad
Let $f(x)=\frac{e+\ln x}{x^{2}}$.
a. Find the average rate of change of f from $x=1$ to $x=e$.
b. Write an equation of the line tangent to f at $x=1$.
c. Find the x-coordinate of the point on f at which the tangent line to f is horizontal.
d. Find $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow \infty} f(x)$.

Let $f(x)$ be given by the function $f(x)=\ln \left(x+\frac{1}{x}\right)$.
a. Show that $f^{\prime}(x)=\frac{x^{2}-1}{x^{3}+x}$.
b. Find the x-coordinate of the point(s) on f at which the tangent line to f is horizontal.
c. Find the equation of the tangent line to $f(x)$ at $x=2$.
d. If $g(x)=e^{2 f(x)}$, find $g^{\prime}(e)$.
e. Show that $f(x)$ and $g(x)$ have horizontal tangent lines at the same x-value(s).

Consider the closed curve in the $x y$-plane given by $x^{2}-6 x+y^{3}-12 y=11$.
a. Show that $\frac{d y}{d x}=\frac{6-2 x}{3 y^{2}-12}$.
b. Write an equation for the line tangent to the curve at the point $(6,-1)$.
c. Find the coordinates of all points on the curve where the line tangent to the curve is vertical.
d. Show that it is impossible for this curve to have a horizontal tangent along the line $y=4$.
\qquad
Consider the closed curve in the $x y$-plane given by $2 x^{2}-x y+y^{3}+x=9$.
a. Show that $\frac{d y}{d x}=\frac{y-4 x-1}{3 y^{2}-x}$.
b. Find equation(s) of all tangent lines to the curve at $y=1$.
c. There is a number k so that the point $(2.1, k)$ is on the curve. Using the tangent line found in part b, approximate the value of k.
d. Write an equation that can be solved to find the actual value of k so that the point $(2.1, k)$ is on the curve.
e. Solve the equation in part d) for k.
\qquad

Curves f and g are given by the equations below as shown in the figure to the right.

Curve $f: x^{2}-9 \ln (2 y-1)+y^{2}=5$
Curve $g: \quad x^{2}+e^{y^{2}-1}-y=4$
a. For curve f, show that $\frac{d y}{d x}=\frac{2 x y-x}{9-2 y^{2}+y}$

b. Show that horizontal tangents to curve f must occur along the y-axis.
c. For curve g, find $\frac{d y}{d x}$.
d. Show that the line tangent to f is the same as the line normal to curve g at $(2,1)$.
\qquad

Let $f(x)$ be given by the function $f(x)=\left\{\begin{array}{ll}9-4 m x-(1-x)^{2} & \text { if } x \leq 1 \\ m^{2} x-n & \text { if } x>1\end{array}\right.$ where m and n are constants and $m \neq 0$.
a. Write an expression for n if f is continuous at $x=1$.
b. Show that f cannot be continuous at $x=1$ if $n \leq-14$.
c. If f is differentiable at $x=1$, find the values of m and n. Show your reasoning.
d. Using the values of m and n found in part c), determine values of x (if any) that will make $f^{\prime}(x)$ differentiable. Show your reasoning.
\qquad
Let $f(x)$ be given by the function $f(x)=\left\{\begin{array}{ll}g(x)+a & \text { if } x \leq 0 \\ 3-b \cos x & \text { if } x>0\end{array}\right.$ where a and b are constants and $g(x)=\left|1-x^{2}\right|$.
a. Determine if $g(x)$ is differentiable at $x=1$. Justify your answer.
b. Show that $f(x)$ is differentiable at $x=0$ if $a=1$ and $b=1$.
c. Find a relationship between a and b in order for $f(x)$ to be continuous at $x=0$.
d. Find a relationship between a and b in order for $f(x)$ to be differentiable at $x=0$.

