\qquad
The figure to the right shows the graph of f^{\prime}, the derivative of the odd function f. This graph has horizontal tangents at $x=1$ and $x=3$. The domain of f is $-4 \leq x \leq 4$ and $f(1)=-3$.

a. For what values of x does f on $[-4,4]$ have a relative minimum and relative maximum? Justify your answers.
b. On what intervals is the graph of f concave upward? Justify your answers.
c. Find the equation of the tangent line to f at $x=-1$.
d. On the graph provided below, draw a sketch of the general shape of $f(x)$ for $-4 \leq x \leq 4$ which passes through the origin.

\qquad
Consider a differentiable function f having domain all positive real numbers and $f(x)=\frac{3 x^{2}-2}{3 x^{3}}$.
a. Show that $f^{\prime}(x)=\frac{2-x^{2}}{x^{4}}$.
b. Find the x-coordinate of the critical point of f. Determine whether the point is a relative maximum, relative minimum, or neither. Justify your answer.
c. Find intervals where the graph of f is concave up. Justify your answer.
d. Find the value of x where the tangent line to $f(x)$ is parallel to the line $y=x$. Explain your reasoning.
\qquad

Let f be a twice-differentiable function defined on the interval $-0.5<x<4.5$ with $f(2)=-3$. The graph of f^{\prime}, the derivative of f is shown to the right. The graph of f^{\prime} has x-intercepts at $x=1$ and $x=4$ and has a horizontal tangent at $x=3$. Let g be the function given by $g(x)=e^{-f(x)}$.

a. Write an equation for the line tangent to the graph of g at $x=2$.
b. For $-0.5<x<4.5$, find all values of x at which g has a local maximum. Justify your answer.
c. Find the average rate of change of g^{\prime}, the derivative of g, on the interval $[2,4]$.
d. The second derivative of g is given by $g^{\prime \prime}(x)=-e^{-f(x)}\left[f^{\prime \prime}(x)-\left(f^{\prime}(x)\right)^{2}\right]$. Determine whether g is concave up or concave down at $x=1$. Justify your answer.

The figure to the right shows the graph of f^{\prime}, the derivative of the function f on the closed interval $-2 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangents at $x=1$ and $x=5$. The function is twice differentiable with $f(3)=-2$.

a. Find the x-coordinate of the point(s) of inflection of the graph of f. Give a reason for your answer.
b. For what values of x does f attain its absolute maximum value on the closed interval $-2 \leq x \leq 8$? Show the analysis that leads to your answer.
c. Using the known points given on the graph of f^{\prime}, for what value(s) of x does the graph of $y=x^{2}+f(x)$ have a horizontal tangent? Give a reason for your answer.
d. Let g be the function defined as $g(x)=x^{2} f(x)$. Find an equation for the line tangent to the graph of g at $x=3$.

A particle moves along the x-axis so that any time $t>0$, its velocity is given by $v(t)=2 t \ln t-t$.
a. Write an expression for the acceleration of the particle.
b. What are the values of t for which the particle is moving to the right? Justify your answer.
c. Is the particle speeding up or slowing down at $t=1$? Show the analysis that leads to your conclusion.
d. Find the absolute minimum velocity of the particle. Show the analysis that leads to your conclusion.
\qquad
Let f be a function that has domain: the closed interval $[-1,6]$ and range: the closed interval $[-10,2]$. Let $f(-1)=2, f(0)=0$, and $f(6)=-2$. Let f have the derivative f^{\prime} that is continuous and have the graph shown in the figure above.
a. Find all values of x for which f assumes a relative minimum. Give a reason for your answer.

b. Find all values of x for which f assumes its absolute maximum. Justify your answer.
c. Find the intervals on which f is concave upward.
d. Find all values of x for which f has a point of inflection. Give a reason for your answer.
e. On the axes provided, sketch the graph of f.

\qquad
In the Angry Birds ${ }^{\mathrm{TM}}$ game, the green bird (also called the Boomerang Bird) can change directions. Suppose the green bird is catapulted along the x-axis such that its position at time t is given by $x(t)=4 \cos \left(\pi t^{2}\right)-1$ for $0 \leq t \leq \sqrt{\frac{3}{2}}$.
a. Find an expression for the velocity of the bird.

b. For what values of t is the bird moving left? Justify your answer.
c. Is the bird slowing down, speeding up, or neither at $t=\frac{\sqrt{3}}{2}$? Show the analysis that leads to your conclusion.
d. How far does the bird travel by the time it reaches its absolute minimum value on the x-axis?

Suppose f is a function defined on $[-8,8]$ given by $f(x)=4 x^{1 / 3}-x^{4 / 3}-k$, where k is a positive constant.
a. Show that $f^{\prime}(x)=\frac{4-4 x}{3 x^{2 / 3}}$.
b. For what values of x is $f(x)$ increasing? Justify your answer.
c. Write an expression for the absolute minimum value of f on $[-8,8]$. Show the analysis that leads to your answer.
d. Find all possible values of k such that $f(x)$ has no real zeros. Show the analysis that leads to your answer.

Suppose f is a function given by $f(x)=\left(x^{2}-2 x-14\right) e^{-x}$.
a. Find the interval(s) where f is increasing. Justify your answer.
b. Find the x-value where there are point(s) of inflection for $f(x)$.
c. Find the absolute maximum and absolute minimum values of f if they exist. Show the analysis that leads to your conclusion.

Consider the function $f(x)=\ln (x+1)-\sin x$ defined on $0 \leq x \leq 2 \pi$.
a. Find the equation of the tangent line to f at $x=\pi$.
b. Find the minimum slope of $f(x)$ for $0 \leq x \leq 2 \pi$. Show the analysis that leads to your conclusion.
c. If the function $g(x)=\ln (x+1)-k \sin x$ has a critical point at $x=\pi$, find the value of k and determine whether the point $(\pi, g(\pi))$ is a relative minimum, relative maximum, or neither for $g(x)$. Show the analysis that leads to your conclusion.
\qquad
Let f be a function defined for all $x \neq 0$ such that $f(5)=2$ and the derivative of f is given by $f^{\prime}(x)=\frac{x^{2}-10 x+16}{x}$ for all $x \neq 0$.
a. Find all values of x for which the graph has a relative maximum and relative minimum. Justify your answer.
b. Find the minimum slope of f if $x>0$.
c. Find the equation for the line tangent to the graph of f at $x=5$ and use it to approximate $f(5.5)$.
d. Does the value found in part c$)$ underestimate or overestimate $f(5.5)$? Give a reason for your answer.
\qquad

A rectangle is inscribed in the region bounded by the x-axis and the parabola $y=16-x^{2}$ as shown in the figure to the right.
a. The point shown in the figure moves along the curve so that its x-coordinate increases at the constant rate of 1.5 units/minute. Find the rate of change of the area of the rectangle when $x=2$.

b. Find the dimensions of the rectangle that gives the greatest area.
c. The parabola $y=16-x^{2}$ is rotated about the y-axis to form a paraboloid. A cylinder is inscribed in the paraboloid as shown in the figure to the right. Find the radius and height of the cylinder of greatest volume.

\qquad
The price of a share of stock in dollars over a week is given by the function $P(t)=\sqrt{2 t+1}+2 \cos t+20$ where t is measured in days and $0 \leq t \leq 5$.
a. Find the average rate of change of the price of the stock over [0,5]. Use correct units.

b. Apply the Mean-Value Theorem to P on $[0,5]$ and explain the result in the context of the problem situation.
c. On what value of t over the 5 -day period is the price of the stock increasing the fastest?

