© 2012 www.mastermathmentor.com

24. AB Calculus – Step-by-Step

The figure to the right shows the graph of f', the derivative of the odd function f. This graph has horizontal tangents at x = 1 and x = 3. The domain of f is $-4 \le x \le 4$ and f(1) = -3.

a. For what values of x does f on [-4,4] have a relative minimum and relative maximum? Justify your answers.

b. On what intervals is the graph of *f* concave upward? Justify your answers.

c. Find the equation of the tangent line to f at x = -1.

d. On the graph provided below, draw a sketch of the general shape of f(x) for $-4 \le x \le 4$ which passes through the origin.

Name

Consider a differentiable function *f* having domain all positive real numbers and $f(x) = \frac{3x^2 - 2}{3x^3}$.

a. Show that
$$f'(x) = \frac{2 - x^2}{x^4}$$
.

b. Find the *x*-coordinate of the critical point of f. Determine whether the point is a relative maximum, relative minimum, or neither. Justify your answer.

c. Find intervals where the graph of f is concave up. Justify your answer.

d. Find the value of x where the tangent line to f(x) is parallel to the line y = x. Explain your reasoning.

Let *f* be a twice-differentiable function defined on the interval -0.5 < x < 4.5 with f(2) = -3. The graph of *f'*, the derivative of *f* is shown to the right. The graph of *f'* has *x*-intercepts at x = 1 and x = 4 and has a horizontal tangent at x = 3. Let *g* be the function given by $g(x) = e^{-f(x)}$.

a. Write an equation for the line tangent to the graph of g at x = 2.

b. For -0.5 < x < 4.5, find all values of x at which g has a local maximum. Justify your answer.

Name

c. Find the average rate of change of g', the derivative of g, on the interval [2, 4].

d. The second derivative of g is given by $g''(x) = -e^{-f(x)} [f''(x) - (f'(x))^2]$. Determine whether g is concave up or concave down at x = 1. Justify your answer.

The figure to the right shows the graph of f', the derivative of the function f on the closed interval $-2 \le x \le 8$. The graph of f' has horizontal tangents at x = 1 and x = 5. The function is twice differentiable with f(3) = -2.

a. Find the *x*-coordinate of the point(s) of inflection of the graph of *f*. Give a reason for your answer.

b. For what values of x does f attain its absolute maximum value on the closed interval $-2 \le x \le 8$? Show the analysis that leads to your answer.

c. Using the known points given on the graph of f', for what value(s) of x does the graph of $y = x^2 + f(x)$ have a horizontal tangent? Give a reason for your answer.

d. Let g be the function defined as $g(x) = x^2 f(x)$. Find an equation for the line tangent to the graph of g at x = 3.

Name_____

A particle moves along the x-axis so that any time t > 0, its velocity is given by $v(t) = 2t \ln t - t$.

a. Write an expression for the acceleration of the particle.

b. What are the values of *t* for which the particle is moving to the right? Justify your answer.

c. Is the particle speeding up or slowing down at t = 1? Show the analysis that leads to your conclusion.

d. Find the absolute minimum velocity of the particle. Show the analysis that leads to your conclusion.

Name

Let *f* be a function that has domain: the closed interval [-1, 6] and range: the closed interval [-10, 2]. Let f(-1) = 2, f(0) = 0, and f(6) = -2. Let *f* have the derivative *f'* that is continuous and have the graph shown in the figure above.

a. Find all values of x for which f assumes a relative minimum. Give a reason for your answer.

- b. Find all values of x for which f assumes its absolute maximum. Justify your answer.
- c. Find the intervals on which f is concave upward.
- d. Find all values of x for which f has a point of inflection. Give a reason for your answer.
- e. On the axes provided, sketch the graph of f.

Name

In the Angry BirdsTM game, the green bird (also called the Boomerang Bird) can change directions. Suppose the green bird is catapulted along the *x*-axis such that its position at time *t* is given by $x(t) = 4\cos(\pi t^2) - 1$ for $0 \le t \le \sqrt{\frac{3}{2}}$.

a. Find an expression for the velocity of the bird.

c. Is the bird slowing down, speeding up, or neither at $t = \frac{\sqrt{3}}{2}$? Show the analysis that leads to your conclusion.

d. How far does the bird travel by the time it reaches its absolute minimum value on the *x*-axis?

Name_____

Suppose f is a function defined on [-8, 8] given by $f(x) = 4x^{1/3} - x^{4/3} - k$, where k is a positive constant.

a. Show that
$$f'(x) = \frac{4-4x}{3x^{2/3}}$$
.

b. For what values of x is f(x) increasing? Justify your answer.

c. Write an expression for the absolute minimum value of f on [-8, 8]. Show the analysis that leads to your answer.

d. Find all possible values of k such that f(x) has no real zeros. Show the analysis that leads to your answer.

Suppose f is a function given by $f(x) = (x^2 - 2x - 14)e^{-x}$.

a. Find the interval(s) where f is increasing. Justify your answer.

b. Find the *x*-value where there are point(s) of inflection for f(x).

c. Find the absolute maximum and absolute minimum values of f if they exist. Show the analysis that leads to your conclusion.

Consider the function $f(x) = \ln(x+1) - \sin x$ defined on $0 \le x \le 2\pi$.

a. Find the equation of the tangent line to f at $x = \pi$.

b. Find the minimum slope of f(x) for $0 \le x \le 2\pi$. Show the analysis that leads to your conclusion.

c. If the function $g(x) = \ln(x+1) - k \sin x$ has a critical point at $x = \pi$, find the value of k and determine whether the point $(\pi, g(\pi))$ is a relative minimum, relative maximum, or neither for g(x). Show the analysis that leads to your conclusion.

Name

Let f be a function defined for all $x \neq 0$ such that f(5) = 2 and the derivative of f is given by

$$f'(x) = \frac{x^2 - 10x + 16}{x}$$
 for all $x \neq 0$.

a. Find all values of x for which the graph has a relative maximum and relative minimum. Justify your answer.

b. Find the minimum slope of f if x > 0.

c. Find the equation for the line tangent to the graph of f at x = 5 and use it to approximate f(5.5).

d. Does the value found in part c) underestimate or overestimate f(5.5)? Give a reason for your answer.

A rectangle is inscribed in the region bounded by the *x*-axis and the parabola $y = 16 - x^2$ as shown in the figure to the right.

a. The point shown in the figure moves along the curve so that its *x*-coordinate increases at the constant rate of 1.5 units/minute. Find the rate of change of the area of the rectangle when x = 2.

b. Find the dimensions of the rectangle that gives the greatest area.

c. The parabola $y = 16 - x^2$ is rotated about the *y*-axis to form a paraboloid. A cylinder is inscribed in the paraboloid as shown in the figure to the right. Find the radius and height of the cylinder of greatest volume.

36. AB Calculus – Step-by-Step (Calculators Allowed) Name

The price of a share of stock in dollars over a week is given by the function $P(t) = \sqrt{2t+1} + 2\cos t + 20$ where *t* is measured in days and $0 \le t \le 5$.

a. Find the average rate of change of the price of the stock over [0, 5]. Use correct units.

b. Apply the Mean-Value Theorem to P on [0, 5] and explain the result in the context of the problem situation.

c. On what value of *t* over the 5-day period is the price of the stock increasing the fastest?